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Abstract 
Biology and ecology currently lack a unifying theory for movement mechanisms as well as 
population level patterns. Most methods for analyzing both movement and population patterns 
require assumptions about the type of movement or expected population patterns.  An agent 
based model, where each animal is represented as an evolutionarily trained neural network, is 
used to generate relocation data for a variety of landscapes without making assumptions about 
movement mechanisms.  This data are analyzed using spatial metrics to attempt to classify the 
population level patterns that have emerged.   
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1. Project Background 
There are many different mechanisms that animals may use to direct movement, for example an 
animal could use sensory cues (sight, smell) to move towards a resource such as food or water.  
Movement mechanisms fall into three broad categories: non-oriented, oriented, and spatial 
memory.  Animals may use multiple mechanisms, for example, a random walk around a central 
place for part of the year followed by a migration to a new location that is guided by memory of 
landmarks. While there are various models for each of the different types of mechanisms, there is 
not a model that can accommodate all three.  Based on the spatiotemporal variability of the 
landscape, there are three population movement patterns that animals may exhibit: sedentary 
ranges, migration, and nomadism.  Sedentary range is when the population moves about a central 
place (relatively small compared to the available range for that species), migration is when a 
population follows a predictable cycle of movement between two disjoint locations, and 
nomadism is when the population moves to multiple locations in a non-predictable manner.  It is 
hypothesized that the spatial and temporal variability of resource landscapes will determine the 
most efficient movement mechanism as well as the overall population pattern, as summarized in 
Figure 1.  While there are different analysis methods for each of the possible population 
distributions, most rely on an initial assumption of the type of distribution the population is 
exhibiting [6].  
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Figure 1: Hypothesized relationship between temporal 
predictability and spatial heterogeneity. For example, if the 

resources are highly predictable, spatial memory will be the most 
efficient mechanism. Based on the heterogeneity of the landscape, 
this could cause migration or range residency to occur. From [6]. 
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2. Project Objectives 
The overall objective of this paper is to be able to classify population level patterns from location 
data, based on three spatial metrics. To do this, an agent based model of individuals and herds 
will be used, where the individuals are deciding movement based on an artificial neural network 
and a set of movement rules.  

3. Approach 
There will be two parts to this project.  The first part is an implementation of an agent based 
model with evolutionarily trained neural networks to generate relocation data. The second part is 
a suite of spatial metrics that will be used to analyze the simulation or relocation data to discern 
the type of population distribution.  
 

Table 1: Notation used throughout. 

Symbol Meaning 
𝑁 Number of individuals (or agents) 
𝐺 Number of generations 
𝑅 Number of total resources on the grid 
𝑟 Length (in cells) of side of resource patch {1, 2, 4, 8} 
𝑃𝑟 Predictability of landscape {0, 25%, 50%, 75%, 100%} 
𝑃!"# Probability of point mutation 
𝑃!"#$% Probability of crossover 
∆𝑥(𝑡!) Distance traveled in x direction from ti-1 to ti 

∆𝑦(𝑡!) Distance traveled in y direction from ti-1 to ti 
𝑃! = {𝑝!! ,𝑝!! ,…𝑝!! } Set of data points for individual i, where pi is an (x, y) location  

𝑀 Total number of time steps (number of (x,y) pairs) 
𝑆 = {𝑠!, 𝑠!,… 𝑠!} Set of distances for which to calculate the PDI 

𝜇! Global mean shift in x direction  
𝜇! Global mean shift in y direction  
𝜎 Global variance 
𝜌 Global correlation 

 

3.1 Agent Based Model  
The agent based model will consist of two stages – an evolution phase and a herd movement 
phase. The movement rules (as determined by the neural network) will be the same for both 
stages, with an additional rule such that agents cannot occupy the same cell at the same time 
step. Stage one is based on [5]. The following sections give further details about the landscape, 
agents, and evolution. The full algorithm of the entire agent based model can be found in Section 
1 of the Appendix. 

3.1.1 Landscape 
As in [5], the landscape consists of a 64 by 64 grid of cells with reflective boundaries. Each cell 
has an integer value indicating a resource count in the cell. If an agent moves to a cell with a 
non-zero resource count, a resource is transferred to the agent (the agent’s resource count is 
increased by 1, the cell’s resource count is decreased by one). The landscape is varied in two 
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ways – patch size and predictability.  The patch size is defined as the size of the resource squares 
as they are placed on the landscape, as seen in Figure 2. Predictability is defined as the 
percentage of the patches that remains in the same location throughout all generations, as seen in 
Figure 3. The simulation will be run for all 20 possible combinations of patch size and 
predictability.  For a given generation, the starting landscape is the same for all individuals, but 
the landscape changes each generation according to the predictability.  For the evolution stage, 
the maximum resource count in any cell is 1 and if a cell is depleted it will remain depleted for 
the current agent and generation. For the herd movement phase, the maximum resource count in 
any cell will be the number of agents in the herd. 
 

 
Figure 2: Patch size. The grid on the left shows a patch size of r = 2, while the right shows a patch 

size of r = 4. Note that the total number of resources cells remains constant, regardless of the patch 
size. Patch size will be {1, 2, 4, 8}. 

 
Figure 3: Landscape predictability. The top figure shows a landscape predictability of Pr = 0.75, 
where 6 of the 8 resource patches remain constant throughout generations. The bottom shows a 

landscape predictability of Pr = 0.5, where 4 of the 8 resource patches remain constant throughout 
generations. Landscape predictability will be selected from {0, 0.25, 0.5, 0.75, 1}.  
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3.1.2 Agents 
Each agent is represented by a fully connected feed forward artificial neural network, consisting 
of seven input variables (and a bias), three hidden nodes, and three output nodes as shown in 
Figure 4, from [5]. 
 

 
Figure 4: Agent Neural Network. There are 8 input nodes representing three different movement 

mechanisms. Modified from [5], with permission.  

This gives 33 weights connecting the nodes, and these 33 weights are representative of the 
agent’s “genes”. The weights are integer values from [-5,5]. The initial weights for each agent 
are randomly selected from a uniform distribution. The inputs to the hidden layer are scaled to   
[-1,1], and the values of the hidden nodes and output nodes are determined by the following 
equations.  
 

HiddenNode! =
exp Inputi×weightij!

!!!

1+ exp Inputi×weightij!
!!!

 

 

OutputNode! =
exp HiddenNodej×weightjk!

!!!

1+ exp HiddenNodej×weightjk!
!!!

 

 
Input variables are as follows and are updated after each movement step: 

1. Current value of resource counter (starts at zero) 
2. Increase in resource counter over the last eight steps (starts at zero) 
3. Search effort over the last eight steps (defined as an agent’s intention to deviate from 

current movement direction – see 2.1.2.3, starts at zero) 
4. Number of cells in surrounding eight cell neighborhood that contains a resource 
5. Current x-position 
6. Current y-position 
7. Current time step 

 
Agents may move to any cell immediately adjacent and may only move one cell at any given 
time step. Agents may not stay in the same cell unless they are “trapped” by the edges of the 
landscape and other agents.  
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3.1.3 Evolution  
Each generation, agents are randomly selected without replacement in groups of six [5]. The 
agent in the group of six with the largest value of the resource counter is chosen to reproduce.  
When the agent is reproduced, the 33 weights (representing the genes of the agent) are copied six 
times to create six new agents.  When copying the weights, there is a 20% probability of a 
crossover event occurring (𝑃!"# = 0.20) and a 2% probability at each weight for a point 
mutation (𝑃!"#$% = 0.20) [5]. 

3.2 Spatial Statistics 

3.2.1 Realized Mobility Index 
Realized mobility index, or RMI, describes the proportion of the annual range an individual is 
using. The range of the individual is defined as the minimum convex polygon covering all 
location points for that individual. The range of the population is defined as the minimum convex 
polygon covering all location points for all individuals in the population. The RMI is simply the 
ratio of the area of the individual range to the area of the population range. An RMI is calculated 
for each individual in the population, and then averaged over the population [7]. The minimum 
convex polygon will be found using the following algorithm from Kirkpatrick and Seidel [3]. 
First, the upper hull will be determined, then the lower hull will be determined using the same 
method. If the left and right endpoints on the upper and lower hull are not the same, vertical lines 
can be drawn to connect them. The full algorithm can be found in Section 2 of the Appendix.  

3.2.2 Population Dispersion Index 
Population dispersion index, or PDI, describes how clustered the population is at different spatial 
scales [7]. The PDI is the average of the bivariate k-function for each individual in the 
population. The bivariate k-function is defined as expected number of points of pattern 1 within a 
distance s of an arbitrary point of pattern 2, divided by overall point density in pattern 1. The 
algorithm for calculating the PDI is given below. For ease of reading, the algorithm for the 
bivariate k-function is separated and detailed following the PDI algorithm. The algorithm for 
computing the bivariate k-function is based on Cressie [2] with edge corrections from Lotwick 
and Silverman [4]. The full algorithm can be found in Section 3 of the Appendix. 

3.2.3 Movement Correlation Index  
The movement correlation index, or MCI, is a measure of how much the movements of the 
individuals are correlated with each other. A positive number indicates the individuals move 
together, and a negative number indicates the individuals move away from each other. A value 
near zero indicates that the individuals are not correlated. The MCI assumes that the movements 
of the individuals are described by a discrete time based Gaussian position jump process with N 
individuals and M time steps. A global mean shift in the x-direction (𝜇!), mean shift in the y-
direction (𝜇!), variance (𝜎!), and correlation (𝜌) are assumed for all individuals. The full 
algorithm can be found in Section 4 of the Appendix. 

4. Implementation 
The above algorithms are implemented using R due to its popularity among biologists and 
ecologists, as well as MATLAB and C as needed for speed considerations. The code was run on 
a Macbook Pro with a 2.9 GHz Intel Core i7 processor with 8 GB of RAM.  
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5. Databases 
The agent based model generated the data for input to the PDI, RMI, and MCI algorithms.  
Additionally, real relocation data from gazelles will be used as input to the PDI, RMI, and MCI 
algorithms. The relocation data will consist of a time series of x and y locations from 36 gazelles 
with GPS collars. The time series for an individual gazelle ranges from 50 days to 917 days, with 
8111 data points in total. The time intervals between data points vary from 1 to 25 hours and will 
have gaps from satellite interference or battery saving programs. Some preprocessing of this data 
was necessary to use with the PDI, RMI, and MCI metrics.  

6. Validation 

6.1 Agent Based Model 
The agent based model will be validated in smaller modules as well as overall.   

6.1.1 Landscape Initialization 
The landscape initialization was partially validated by computing the number of cells with a 
resource and ensuring it equals R. The landscape initialization and update was further validated 
by updating the landscape many times and summing the number of resources per cell over time.  
The cells that were selected to be stationary resource patches throughout generations should have 
a resource value equal to the number of updates to the landscape, the cells selected to be 
stationary empty patches throughout generations should have a resource value equal to zero, and 
the other cells should have a resource value that is less than the number of updates but uniform 
across all cells that were not selected to be stationary. Visualizing this with a color map of the 
matrix (imagesc function in MATLAB) next to a matrix holding only the stationary patches 
should show that the distribution of the patches that are not stationary is roughly uniform. The 
lack of pattern in the non-stationary cells confirms that the landscape is being generated 
appropriately. It should also be noted that due to the definition of predictability, with a patch size 
of 8, there are only two resource patches, which only allows three different predictability levels 
for resource patches. Thus, Pr = 0  and Pr = 25% both have 0 predictable resource patches, with 
an appropriate number of stationary empty patches, Pr = 50% and Pr = 75% have 1 predictable 
resource patch, with an appropriate number of stationary empty patches, and Pr = 100% has 2 
predictable resource patches. The landscape validation plots can be seen in Figure 5 to Figure 9 
below. 
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Figure 5: Landscape Generation for 5000 Runs, Pr = 0%, r = {1, 2, 4, 8}. Stable patches are shown 

on the right (in this case, none). 
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Figure 6: Landscape Generation for 5000 Runs, Pr = 25%, r = {1, 2, 4, 8}. Stable patches are shown 

on the right, with stable resource patches in red and stable empty patches in blue. 
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Figure 7: Landscape Generation for 5000 Runs, Pr = 50%, r = {1, 2, 4, 8}. Stable patches are shown 

on the right, with stable resource patches in red and stable empty patches in blue. 
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Figure 8: Landscape Generation for 5000 Runs, Pr = 75%, r = {1, 2, 4, 8}. Stable patches are shown 

on the right, with stable resource patches in red and stable empty patches in blue. 
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Figure 9: Landscape Generation for 5000 Runs, Pr = 100%, r = {1, 2, 4, 8}. Stable patches are 

shown on the right, with stable resource patches in red and stable empty patches in blue. Note that 
because it is 100% predictable the predictable patch locations plot exactly matches the plot from 

5000 runs. 
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6.1.2 Agent Movement 
The agent movement was validated by selecting test cases, computing values of the nodes and 
determining the resulting movement decisions by hand, and then comparing this with the 
direction selected by the implementation. For all test cases, 3 agents were initialized with 
specific weights, input values, and previous direction. The location and visible resources were 
varied throughout the test cases. Focus was given to the edges of the map in selecting locations.  
For each test case, the values of the hidden and output nodes were calculated by hand, and then 
the agent direction selection algorithm was followed. For some combinations of node values, 
location, and resources, the algorithm specifies multiple directions from which to randomly 
select. The agent direction function was called 10,000 times for each test case, and a histogram 
was created from the distribution of directions selected. The histograms confirm that the correct 
direction was always selected by the agent direction function, as well as a uniform distribution 
between multiple directions if multiple directions were allowed for the resulting node values. In 
the following figures, the location of the agent, previous direction, calculated node values, and an 
image of the 8-cell neighborhood are given. The x represents the agent’s location, the grey 
shaded cells represent that the map does not exist in those cells, 0 represents no resource in that 
cell, and 1 represents a resource is in that cell.  
 
Test	  Case	  1	   	   	   	   	   	   	   	   	  

Memory	  Movement,	  direction	  of	  1,	  
but	  unavailable,	  so	  randomly	  select	  

from	  directions	  5,	  6,	  7	  

Row	   1	   	   	   	   	   	   Node	  4	   0.810	  
Column	   64	   	   0	   x	   	   	   Node	  5	   0.906	  

Previous	  Dir	   2	   	   0	   0	   	   	   Node	  6	   0.004	  

	  
Figure 10: Agent Movement Validation Test Case 1. 

Test	  Case	  2	   	   	   	   	   	   	   	   	  

Memory	  Movement,	  direction	  of	  1	  
Row	   64	   	   	  	   0	   0	   	   Node	  4	   0.981	  

Column	   1	   	   	  	   x	   0	   	   Node	  5	   0.003	  
Previous	  Dir	   6	   	   	  	   	  	   	  	   	   Node	  6	   0.053	  
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Figure 11: Agent Movement Validation Test Case 2. 
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Test	  Case	  3	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  3	  resources	  

visible,	  select	  from	  1,	  7,	  8	  
Row	   64	   	   1	   1	   	  	   	   Node	  4	   0.501	  

Column	   64	   	   1	   x	   	  	   	   Node	  5	   0.501	  
Previous	  Dir	   4	   	   	  	   	  	   	  	   	   Node	  6	   0.490	  

	  
Figure 12: Agent Movement Validation Test Case 3. 

Test	  Case	  4	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  1	  resource	  

visible,	  direction	  of	  7	  
Row	   64	   	   0	   0	   	  	   	   Node	  4	   0.501	  

Column	   64	   	   1	   x	   	  	   	   Node	  5	   0.501	  
Previous	  Dir	   4	   	   	  	   	  	   	  	   	   Node	  6	   0.490	  

	  
Figure 13: Agent Movement Validation Test Case 4. 
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Test	  Case	  5	   	   	   	   	   	   	   	   	  
Non-‐Oriented	  Movement,	  previous	  
direction	  was	  1	  -‐	  2	  is	  unavailable,	  so	  

select	  from	  1,	  8	  

Row	   2	   	   0	   0	   	  	   	   Node	  4	   0.267	  
Column	   64	   	   0	   x	   	  	   	   Node	  5	   0.504	  

Previous	  Dir	   1	   	   0	   0	   	  	   	   Node	  6	   0.048	  

	  
Figure 14: Agent Movement Validation Test Case 5. 

Test	  Case	  6	   	   	   	   	   	   	   	   	  
Non-‐Oriented	  Movement,	  previous	  

direction	  was	  6	  -‐	  5	  and	  6	  are	  
unavailable,	  direction	  of	  7	  

Row	   64	   	   0	   0	   0	   	   Node	  4	   0.269	  
Column	   2	   	   0	   x	   0	   	   Node	  5	   0.501	  

Previous	  Dir	   6	   	   	  	   	  	   	  	   	   Node	  6	   0.047	  

	  
Figure 15: Agent Movement Validation Test Case 6. 
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Test	  Case	  7	   	   	   	   	   	   	   	   	  
Non-‐Oriented	  Movement,	  previous	  

direction	  was	  2	  -‐	  1,	  2,	  3,	  4,	  8	  
unavailable,	  so	  select	  from	  5,	  6,	  7	  

Row	   1	   	   	  	   	  	   	  	   	   Node	  4	   0.267	  
Column	   64	   	   0	   x	   	  	   	   Node	  5	   0.504	  

Previous	  Dir	   2	   	   0	   0	   	  	   	   Node	  6	   0.048	  

	  
Figure 16: Agent Movement Validation Test Case 7. 

Test	  Case	  8	   	   	   	   	   	   	   	   	  
Non-‐Oriented	  Movement,	  previous	  
direction	  was	  1	  -‐	  select	  from	  1,	  2,	  8	  

Row	   63	   	   0	   0	   0	   	   Node	  4	   0.267	  
Column	   63	   	   0	   x	   0	   	   Node	  5	   0.484	  

Previous	  Dir	   1	   	   0	   0	   0	   	   Node	  6	   0.055	  

	  
Figure 17: Agent Movement Validation Test Case 8. 
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Test	  Case	  9	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  1	  resource	  

available,	  direction	  of	  1	  
Row	   35	   	   0	   1	   0	   	   Node	  4	   0.500	  

Column	   35	   	   0	   x	   0	   	   Node	  5	   0.952	  
Previous	  Dir	   1	   	   0	   0	   0	   	   Node	  6	   0.050	  

	  
Figure 18: Agent Movement Validation Test Case 9. 

Test	  Case	  10	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  3	  resources	  
available,	  randomly	  select	  from	  

direction	  of	  1,	  2,	  8	  

Row	   35	   	   1	   1	   1	   	   Node	  4	   0.500	  
Column	   35	   	   0	   x	   0	   	   Node	  5	   0.952	  

Previous	  Dir	   1	   	   0	   0	   0	   	   Node	  6	   0.050	  

	  
Figure 19: Agent Movement Validation Test Case 10. 
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Test	  Case	  11	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  5	  resources	  
available,	  randomly	  select	  from	  

direction	  1,	  2,	  4,	  6,	  8	  

Row	   35	   	   1	   1	   1	   	   Node	  4	   0.500	  
Column	   35	   	   0	   x	   0	   	   Node	  5	   0.952	  

Previous	  Dir	   1	   	   1	   0	   1	   	   Node	  6	   0.050	  

	  
Figure 20: Agent Movement Validation Test Case 11. 

Test	  Case	  12	   	   	   	   	   	   	   	   	  
Oriented	  Movement,	  7	  resources	  
available,	  randomly	  select	  from	  

directions	  1,	  2,	  3,	  4,	  6,	  7,	  8	  

Row	   35	   	   1	   1	   1	   	   Node	  4	   0.500	  
Column	   35	   	   1	   x	   1	   	   Node	  5	   0.952	  

Previous	  Dir	   1	   	   1	   0	   1	   	   Node	  6	   0.050	  

	  
Figure 21: Agent Movement Validation Test Case 12. 

6.1.3 Reproduction 
The reproduction can be validated with edge cases. If the mutation and crossover are set to zero, 
the overall efficiency, defined as the ratio of resources gathered to time steps taken, should have 
a sharp initial increase (where the most efficient agents are copied perfectly) and then be 
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relatively constant throughout all generations. As seen in Figure 22, below, this is the case when 
Pmut = 0 and Pxover = 0 (green line) with a constant efficiency of 20% after about 20 generations, 
where the variance is due to random placement of agents. When Pmut = 0.2 and Pxover = 0.02, the 
efficiency is increasing (blue line), with an efficiency of about 28% after G =300 and continuing 
to increase.  
 

 

 
Figure 22: Reproduction Validation using edge case (blue) compared to model values for mutation 

and crossover (green). 

6.1.4 Overall Stage 1 
The overall model for stage 0 and 1 can be compared to an existing C implementation [5]. While 
many steps in the algorithm require random number generation, the overall trends in efficiency 
can be examined, where efficiency is defined as the average resources gathered per time step of 
the reproducing population. The results can be seen in Figure 23, below.  
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Figure 23: Validation of Stage 1 by comparison with results from C implementation. The top graph 
shows the efficiency (resources encountered per time step of the reproducing population) vs. 

generation, averaged over 100 runs for the C implementation by Mueller [5] (used with 
permission). The bottom graph shows the efficiency vs. generation, averaged over 10 runs for the 
MATLAB implementation. Trends and efficiency at G = 1000 are similar to C implementation, 

validating Stage 1 as a whole.  

6.1.5 Overall Stage 2 
As stage 2 is only a slight modification of stage 1, stage 2 can be further validated by 
programmatically checking that the agents do not occupy the same cell at the same time and by 
adding a few test cases concerning agent movement when other agents block neighboring cells. 
While the first produces no interesting graphical result, the test cases used can be seen in Figure 
24 - Figure 26, below. In the following figures, the location of the agent, previous direction, 
calculated node values, and an image of the 8-cell neighborhood are given. The x represents the 
agent’s location, the grey shaded cells represent that the map does not exist in those cells, 0 
represents no resource in that cell, 1 represents a resource is present in that cell, and an A 
represents another agent is present in that cell.  
 
Test	  Case	  1h	   	   	   	   	   	   	   	   	   Memory	  Movement,	  direction	  of	  1,	  

but	  unavailable,	  and	  direction	  7	  is	  
occupied,	  so	  randomly	  select	  from	  

directions	  6	  or	  7.	  

Row	   1	   	   	   	   	   	   Node	  4	   0.810	  
Column	   64	   	   A	   x	   	   	   Node	  5	   0.906	  

Previous	  Dir	   2	   	   0	   0	   	   	   Node	  6	   0.004	  

	  
Figure 24: Agent Movement Validation for Herd Movement, Test Case 1h. 
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Test	  Case	  2h	   	   	   	   	   	   	   	   	  
Memory	  Movement,	  direction	  of	  1,	  
but	  occupied	  by	  agent,	  so	  randomly	  

select	  from	  2,	  3.	  

Row	   64	   	   	  	   A	   0	   	   Node	  4	   0.981	  
Column	   1	   	   	  	   x	   0	   	   Node	  5	   0.003	  

Previous	  Dir	   6	   	   	  	   	  	   	  	   	   Node	  6	   0.053	  

	  
Figure 25: Agent Movement Validation for Herd Movement, Test Case 2h. 

 
Test	  Case	  3h	   	   	   	   	   	   	   	   	  

Oriented	  Movement,	  but	  all	  
surrounding	  cells	  occupied.	  No	  

movement.	  

Row	   64	   	   A	   A	   	  	   	   Node	  4	   0.501	  
Column	   64	   	   A	   x	   	  	   	   Node	  5	   0.501	  

Previous	  Dir	   4	   	   	  	   	  	   	  	   	   Node	  6	   0.490	  

	  
Figure 26: Agent Movement Validation for Herd Movement, Test Case 3h. 
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6.2 Spatial Statistics 
The spatial statistic functions can be validated by comparison with existing implementations 
and/or hand calculations based on a small set of data points.  

6.2.1 Realized Mobility Index 
Finding the RMI involves two steps – first, finding the minimum convex polygon, and second, 
computing the area of this polygon. The minimum convex polygon found by the RMI function 
can be compared to the results of the R function chull, [8] which will compute the minimum 
convex polygon via a different algorithm, but should yield the same result. For validation, 
varying numbers of points were selected from a random uniform distribution to generate data 
sets. The hull created by the RMI function was compared, point by point, to the hull generated by 
the chull function. The number of points of the hull that were not the same (mis-matched 
points) were recorded and shown in Figure 27, below. In all cases, the hull generated by chull 
and the hull generated by RMI were exactly the same.  
 

 
Figure 27: Validation of RMI Function by comparison with chull function. 

The area calculation of a convex polygon that occurs in the RMI function was validated by hand 
computation of simple convex polygons. 

6.2.2 PDI 
The PDI function can be validated via comparison to the R function k12hat, from the 
SPLANCS library [9]. For the validation of the PDI function via the k12hat function, the 
following algorithm was used.  

1. Randomly select two numbers (with replacement) from {10, 20, 30, 40, 50, 60, 70, 80, 
90, 100, 150, 200} to be the number of data points in set 1 and the number of data points 
in set 2.  
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2. Randomly select a number from {10, 20, 30, 40, 50} to use as max coordinate value. Use 
random uniform distribution to select data points for set 1 and set 2 in the range of [-max 
coordinate, max coordinate].   

3. Determine rectangular hull of the combined set of points.  
4. Randomly select a value of S from a uniform distribution of [0, 0.5(Area of rectangular 

hull)0.5] 
5. Compute PDI using both k12hat and PDI function. Calculate error of PDI function 

relative to k12hat function.  
The resulting plot can be seen in Figure 28, below. The relative error is very small, validating the 
PDI function.  
 

 
Figure 28: Validation of PDI by comparison with k12hat. The relative error for all sizes of sets 

tested was below 10-10. 

6.2.3 MCI 
As the MCI metric is simple computationally (around 10 lines) it can be validated by a small 
hand computation.  

7. Testing 

7.1 Timing – Agent Based Model 
Using the R profiler, the self-times for each function can be obtained for the implementation of 
the agent based model in R, as shown in Figure 29, below.  
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Figure 29: Self time, in seconds, per function 

 
With the exception of the landscape regeneration functions, which are included in the ‘other’ 
category because they took so little time, all functions depend on number of agents. Thus, these 
times depend linearly on N, the number of agents in each generation. Determining direction takes 
the most amount of time per generation, but as this function is mostly conditional statements in 
order to match the agent movement algorithm, it is not likely that the time spent in this function 
can be reduced. However, other functions, such as checkAtAssignment, elNamed, el, 
and match, are all internal R functions that are called when data elements in user-defined classes 
are accessed. The total time for one generation in the R implementation is 16.11 seconds, which 
was too slow to make it feasible to run all 20 combinations of landscape variability and patch 
size.  
 
The agent-based model was then implemented in MATLAB. The time per generation in the 
MATLAB implementation was 2.04 seconds, which allowed for all 20 combinations of 
landscape variability and patch size to be run for 1000 generations in around 11 hours and 20 
minutes. Using the MATLAB profiler, the self-times for each function can be obtained, as shown 
in Figure 30 below. The ‘mysim’ function includes both reproduction and refreshing the 
landscape. Again, the function that determines the direction takes the most time, as it must 
evaluate many conditional statements. 
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match,	  0.86	  

el,	  0.77	  

checkAtAssignme
nt,	  0.68	  

elNamed,	  0.52	  

.getClassFromCac
he,	  0.49	  

.Call,	  0.48	  

getClass,	  0.36	  
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other,	  
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Figure 30: Self time, in seconds, per function for MATLAB implementation 

7.2 Timing – Spatial Statistics 
The PDI function was initially implemented fully in R. However, for one set of the agent based 
model simulation data, there would be a total of 12,420,000 point comparisons, which would be 
prohibitively slow. Thus, the function was implemented mostly in C, and the C function is called 
from within an R wrapper. The version of the PDI function that uses the C function is 
approximately 6000 times faster than the version that is entirely implemented in R. For timing 
testing, two randomly selected sets of points from the uniform distribution were chosen and the 
two PDI functions were used to compute PDI. These two PDI values were checked to ensure 
they were the same. A plot of a sample timing run can be seen in Figure 31, below. 
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Figure 31: Timing for the two implementations of the PDI function. The black points (circles) are 

from the function implemented entirely in R, and the blue points (+) are from the function 
implemented in C, then wrapped in an R function. 

The timing of the convex-hull-finding part of the RMI function was tested by randomly 
generating varying sizes of data points from a uniform distribution and then timing how long it 
took to find the convex hull. The number of points needed to make the hull was recorded.  
Theoretically, according to [2], the time should go as nlog(H), where H is the number of points 
on the hull, and n is the total number of points. This is confirmed as when nlog(H) is plotted 
against the time for finding the hull, it is linear, as seen in Figure 32, below. 
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Figure 32: Timing for the convex hull finding part of the RMI algorithm  

7.3 Testing with Simulation Data 
Testing of the RMI, PDI, and MCI was done using the gazelle data set and the Stage 2 simulation 
data sets from all 20 different landscape combinations. Additionally, simulation data sets at a 
lower temporal sampling rate were created by selecting every other point, every 5th point, and 
every 10th point from the full sets of simulation data. RMI, PDI, and MCI statistics for the 
combinations of landscape predictably and patch size will be examined to see if these statistics 
are sufficient for determining large-scale population patterns. Intuitively, one might expect the 
following for the different population patterns. For home-range behavior, a small RMI would be 
expected, as individuals stay within their home range, which is likely a small portion of the entire 
species range. A small PDI at all spatial scales is expected as individuals would stay in their own 
area, and a small or negative MCI at all time scales is also expected as the individuals would not 
interact with each other. For a migratory population, the RMI would be large, as the individuals 
would be moving over most of the range of the species as they migrated from one location to 
another.  The PDI is expected to be large and increasing with increasing distance, as the 
individuals would move together at roughly the same time, making the points of the individual 
clustered with the points of other individuals. The MCI is expected to be low at high sampling 
rates, but high at lower sampling rates, as in a large time scale the individuals should be moving 
together. For a nomadic population, the RMI, MCI, and PDI would likely be in between that of a 
home range population and a migratory population.  Sample tracks for different landscape 
parameters are shown in Figure 33, below. 
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a. 8x8 Patches, Predictability of 100% 

 
b. 4x4 Patches, Predictability of 100% 

 
c. 4x4 Patches, Predictability of 100% 

 
d. b. 4x4 Patches, Predictability of 0% 

Figure 33: Example Tracks for Various Landscape Parameters 

7.3.1 Testing with Simulation Data – RMI 
The RMI for all simulation data sets can be seen in Figure 34, below. In general, the RMI 
decreases slightly as the sampling rate is decreased, which makes sense as the full movement of 
the individuals may not be captured by a less frequent sampling of position. 
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Figure 34: The RMI for all simulation data sets. Different colors represent different levels of 

landscape predictability. For all data sets, a lower sampling rate (every 2nd, every 5th, every 10th 
point) leads to lower RMI relative to the full data set.    

For a sense of RMI trends across the differing landscape combinations, Figure 35 shows a 
summary of RMI for the full simulation data set. The largest RMI values are from a patch size of 
1x1, with generally smaller RMI values as the patch size increases.   
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Figure 35: RMI for Full Simulation Data Set 

7.3.2 Testing with Simulation Data – PDI 
The PDI for the full sets of simulation data can be seen in Figure 36, below. The PDI changes 
only slightly with differing sample rate. As the patch size increases, the PDI for predictable 
landscapes increases, indicating greater clustering of individuals when the landscape is 
predictable. This is sensible as the individuals would have evolved to locate the resources at 
specific (predictable) locations, and thus would be clustered around these resources. As the patch 
size increases, there are fewer total patches, and thus more clustering would occur. Even at large 
patch sizes, the clustering is low for unpredictable landscapes as the individuals are largely 
engaged in random walks as they search for resources.   
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Figure 36: PDI For all simulation data sets, grouped by patch size. Colors indicate predictability, 
and line type indicates sample rate (every point, every 2nd point, every 5th point, every 10th point).  
The PDI does not change considerably for different sample rates. The PDI increases as patch size 

increases.   

7.3.3 Testing with Simulation Data - MCI 
The MCI for the full sets of simulation data can be seen in Figure 37, below. For low 
predictability (Pr = 0%, 25%) and small patch sizes (r = 1), the correlation between the 
individuals is near zero. For the full data sets, the correlation between individuals at larger patch 
sizes with high predictability is slightly negative. This is likely because the individuals cannot 
occupy the same cell, and as they are tightly clustered, must move away from each other to move 
at all.  Somewhat surprisingly, this negative correlation increases as the sampling rate decreases. 
This indicates that the individuals are moving away from each other on a larger time scale. This 
may be due to the random initial placement of the individuals. The individuals placed close to a 
resource patch initially will get to the patch quickly, and once the patch is depleted, move away 
from the patch. The individuals that are further from a patch will still move toward the patch 
without being aware that the patch has been depleted, leading to many individuals moving 
toward the patch while others are moving away from the patch.  
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Figure 37: MCI for all simulation data.  As the sampling rate decreases to every 10th day, the more 

predictable landscapes with larger patch sizes exhibit large negative correlation.  

7.4 Testing with Gazelle Data 
The spatial metrics for the gazelle data are summarized in Table 2, below. As the absolute 
positions do not affect the metrics, the gazelle data was preprocessed to give a similar sample 
area as the simulation data. For reference, an S of 2 corresponds to approximately 6 km. The 
RMI and PDI metrics do not depend on time, and thus the full set of data could be used to 
compute these metrics. However, the MCI requires relocation data that is taken at the same time 
for all individuals with equal time steps. The MCI was calculated for a reduced set of 13 
individuals at a sample rate of 24 hours, as that was the sample rate and individual subset that 
allowed for the largest data set that could be used for the MCI. The gazelle have a PDI and an 
MCI that is consistent with the smaller patch sizes or unpredictable landscapes, and a much 
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smaller RMI than any of the simulation data sets. The smaller RMI is likely due to the large time 
span over which the data was recorded as well as the fact that the gazelles did not have the same 
restrictions on movement as the simulated individuals.  
 

Table 2: Spatial Metrics for Gazelle Data (scaled to match simulation area) 

MCI -0.1273 
RMI 0.0751±0.0676 

PDI (S=2) 29.99±14.52 
PDI (S=3) 60.18±26.30 
PDI (S=4) 97.41±40.61 
PDI (S=5) 140.39±56.10 

 

8. Concluding Remarks 

8.1 Project Summary 
While initially R was chosen as the implementation language because it is familiar to biologists, 
it ultimately was not fast enough for the algorithms in this project because of the prevalence of 
for loops. Re-implementing the agent based algorithm in MATLAB made the run time about 8 
times faster than the R implementation.  Implementing PDI in C and adding an R wrapper made 
the run time almost 6000 times faster than the R implementation, and because it was wrapped in 
an R function, it still can be easily integrated with other metrics and used by biologists. 
 
While the initial goal was to determine if the three spatial metrics could discern between the 
different types of population level movement, it is not likely that the simulation was sufficiently 
realistic to allow for the typical population level movements (home range, migratory, nomadic) 
to emerge. While the behavior of the individuals as well as the spatial metrics did vary with 
varying resource patch size and temporal variability, the mechanisms that may be required for 
some of the types of population level patterns to emerge were not present. For example, 
migratory behavior would likely require a landscape that had periodic generation of resources in 
at least two spatially distinct areas. As the resources did not regenerate in this model, it is 
unlikely that periodic movement between resource patch areas would occur. Despite the lack of 
typical population patterns emerging, the generation of simulation data did allow for the 
examination of the metrics when the data was “collected” at different sampling rates.  
Specifically, while the PDI metric did not change appreciably with a differing sample rate, and 
the RMI predictably decreased with a lower sample rate, the MCI changed greatly with a 
differing sample rate for larger and more predictable patches. This makes sense as the overall 
correlation of individual movements may only be present at larger time scales. For example, one 
might expect an hourly sampling of a migratory population to not be correlated, but a weekly 
sampling during a migration to be highly positively correlated.   

8.2 Future Areas of Research 
The large negative correlation between individuals when the patch size is large and the landscape 
is highly predictable is somewhat surprising, but may be due to the random placement of 
individuals across the entire simulation area. It may be interesting to try placing them in a similar 
starting location to determine if this affects the MCI metric. Aside from not being allowed to 
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occupy the same cell, the individuals in the herd simulation had no awareness of the other 
individuals. While all individuals had the same “memory” of the patch locations as well as the 
same “genetic material”, this did not appear to be sufficient to generate desired population level 
patterns. Future research could include some attractive or repulsive force between different 
individuals, as well as allowing the landscape to regenerate resources according to specific 
schedule in order to model temporal resource availability in a real world landscape.  
 

9. Milestones and Deliverables 
The project schedule as initially proposed is shown below in Table 3. Milestones coincide with 
the bolded elements in the project schedule. 
 

Table 3: Project Schedule and Milestones 

Week (Planned) Tasks 
October 21 – November 3 Set up data structures for agents ✓ 

Implement landscape initialization ✓ 
Implement landscape update ✓ 
Implement agent initialization ✓ 

November 4 - November 17 Implement agent direction ✓ 
Validate agent direction ✓ 

November 18 – December 1 Validate landscape initialization ✓ 
Implement reproduction ✓ 
Validate reproduction ✓ 

December 2 – December 16 Connect implementations for full stage 0 + stage 1 ✓ 
Create mid-year report✓ 
Give mid-year presentation ✓ 

January 20 – February 2 Implement Stage 2✓ 
February 3 – February 16 Implement RMI✓ 
February 17 – March 2 Implement PDI✓ 

Implement MCI✓ 
March 3 – March 16 Validate PDI, RMI, and MCI✓ 
March 24 – April 6 Validate Stage 0, Stage 1, Stage 2✓ 
April 7 – April 20 Test RMI and PDI with gazelle data✓ 

Test RMI and PDI with full simulation data✓ 
Test RMI and PDI with degraded simulation data✓ 

April 21 – May 4 Write final report and create final presentation✓ 
May 5 – May 19 Complete final report and presentation✓  

Give final presentation, submit final report✓ 
 
Deliverables for this project are: 

1. Proposal document 
2. Proposal presentation 
3. Documented code for agent based model  
4. Documented code for RMI, PDI, MCI (with examples for use) 
5. Data sets created by simulation (degraded and full) 
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6. Gazelle data set 
7. Mid-year report 
8. Mid-year presentation 
9. Final report 
10. Final presentation 
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Appendix - Algorithms 
1. Agent Based Model 

1.1 Overall Model 
The following algorithm describes how the overall model was implemented. For ease of reading, 
the landscape initialization, landscape updates, agent direction selection, and reproduction 
algorithms are separated and detailed following the main algorithm. 
 
For each execution of this overall algorithm, a patch size (r) and predictability (Pr) will be 
chosen. 
 
Stage 0 – Initialization 

1. For i = 1:N 
a. Select 33 random integers [-5, 5] to be initial weights for the neural network for 

agent i. 
2. Initialize landscape 

 
Stage 1 – Evolution 

1. For generation j = 1:G 
a. For agent i = 1:N 

i. Place agent i in a random starting location.  
ii. For t = 1:150 

1. Determine direction to move. 
2. Move to new location. 
3. If resource exists at that location, add one to resource counter for 

agent, subtract one from resource counter for cell. 
iii. Renew landscape to state at beginning of generation. 

b. If j != G 
i. Create N new agents according to reproduction algorithm. 

 
Stage 2 – Herd Movement 

1. Choose agent from last generation with largest resource counter and create 24 copies with 
no mutation 

2. For t = 1:150 
a. For j =1:N 

i. Choose without replacement an agent to update. 
ii. If t = 1 

1. Place agent in random starting location. If agent already exists at 
that location, select a new location. 

iii. Else (t > 1) 
1. Determine direction to move. 
2. Move to new location. 
3. If resource exists at that location, add one to resource counter for 

agent, subtract one from resource counter for cell. 
4. Record agent location. 
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1.2 Landscape Initialization 
1. For i:R/r2 

a. Randomly select a location for the top left corner of patch i.  
b. If the patch does not overlap another patch or the edge of the grid 

i. Place patch i (set the value of cells in patch i to 1 for evolution stage or N 
for herd movement stage). 

c. Else, go to Step 1a. 
2. Select !

!!
×𝑃𝑟 patches to remain constant throughout the generations. Let C be the set of 

patches that will remain constant.  

1.3 Landscape Update  
1. Start with blank landscape. 
2. Place all patches in C. 
3. For i:# of patches not in C 

a. Randomly select a location for the top left corner of patch i.  
b. If the patch does not overlap another patch or the edge of the grid 

i. Place patch i (set the value of cells in patch i to 1 if evolution stage 
generation counter is <G, N if generation counter is >G) 

c. Else, go to Step 3a. 

1.4 Agent Direction Selection  
The selection of a movement direction of an agent proceeds according to the following 
algorithm.  If at any time a cell is unavailable due to another agent occupying that cell or due to 
cells not existing off the edge of the grid, the agent will move in a random direction selected 
from the available directions.  

1. Compute hidden layer node values and output layer node values according to 3.1.2. 
2. If Node 4 is [0, 1/3), use non-oriented movement.  

a. If Node 5 is [0,1/3), move in same direction as previous time step, set search 
effort to 0. 

b. If Node 5 is [1/3,2/3), set search effort to 1 and randomly select between 
i. Same direction as previous time step. 

ii. 45 degrees CW from previous time step. 
iii. 45 degrees CCW from previous time step. 

c. Else, Node 5 is [2/3,1] set search effort to 9 and randomly select direction. 
3. Else, if Node 4 is [1/3,2/3), use oriented movement. Set search effort to 0. 

a. If there is more than one resource in the surrounding cells, randomly select a cell 
with resource as new location. 

b. Else, if there is one resource, select that cell as new location. 
c. Else, there are no resources, randomly select cell. 

4. Else, Node 4 is [2/3,1], set search effort to 0 and use memory-oriented movement.  
a. If Node 6 is [0,1/8), go N. 
b. If Node 6 is [1/8,2/8) go NE. 
c. If Node 6 is [2/8, 3/8), go E. 
d. If Node 6 is [3/8, 4/8), go SE. 
e. If Node 6 is [4/8, 5/8), go S. 
f. If Node 6 is [5/8, 6/8), go SW. 
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g. If Node 6 is [6/8, 7/8), go W. 
h. If Node 6 is [7/8, 8/8), go NW. 

1.5 Reproduction 
1. For i = 1:(N/6) 

a. Randomly select six agents without replacement. 
b. Find agent with largest resource counter, call this agent A. 
c. For j = 1:6 

i. For k = 1:33 
1. Choose random number [0,1] from uniform distribution. 
2. If random number is <Prmut 

a. Choose integer from uniform distribution [-5,5] and set this 
value as gene k for agent j. 

3. Else, set gene k for agent j to the value of gene k for agent A. 
2. Choose Prxover xN agents to cross over. Pair agents by randomly ordering the indices of 

selected agents.  
3. For i = 1:2:(Prxover xN) 

a. Choose random integer [1,33] from uniform distribution; this is the start of the 
crossover, call it c. 

b. Swap genes c:33 for agent i with genes c:33 for agent i+1. 
 

2. RMI 

2.1 Algorithm for Finding Upper Hull 
Note: in this algorithm, x(pi) represents the x value of the data point p, with index i. The set of all 
data points is P. 

1. Initialization – Let min and max be the indices of two points in A that form the left and 
right endpoints of the upper hull of P.  

𝑥(𝑝!"#) ≤ 𝑥(𝑝!) ≤ 𝑥(𝑝!"#) 
𝑦 𝑝!"# ≥ 𝑦 𝑝!   if  𝑥 𝑝!"# = 𝑥 𝑝! , 

𝑦 𝑝!"# ≥ 𝑦 𝑝!   if  𝑥 𝑝!"# = 𝑥 𝑝!   for  𝑖 = 1,… ,𝑛 
If min = max, print min and stop. 
Let 𝑇 ∶= 𝑝!"#,𝑝!"# ∪ {𝑝 ∈ 𝑃|𝑥 𝑝!"# < 𝑥 𝑝 < 𝑥 𝑝!"# } 

2. CONNECT(min, max, T) 
 

2.2 Algorithm for CONNECT(k, m, P) 
1. Find a real number a such that 

𝑥 𝑝! ≤ 𝑎  for
𝑃
2   points  in  P  and 

𝑥 𝑝! ≥ 𝑎  for  
|𝑃|
2 points  in  P   

2. Find the “bridge” over the vertical line 𝐿 = {(𝑥,𝑦)|𝑥 = 𝑎} 
(𝑖, 𝑗) ∶= 𝐵𝑅𝐼𝐷𝐺𝐸(𝑃,𝑎) 

3. Let 𝑃!"#$ ∶= 𝑝! ∪ {𝑝 ∈ 𝑃|𝑥 𝑝 < 𝑥(𝑝!) 



 4 

Let 𝑃!"#!! ∶= 𝑝! ∪ {𝑝 ∈ 𝑃|𝑥 𝑝 > 𝑥(𝑝!) 
4. If i = k then print(i) 
5. Else CONNECT(k, i, Pleft) 
6. If j = m then print (j) 
7. Else CONNECT (j, m, Pright) 

 

2.3 Algorithm for BRIDGE(P,a) 
1. 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆 ∶= ∅ 
2. If |P| = 2 then return ((I,J)), where 𝑃 = {𝑝! ,𝑝!} and 𝑥(𝑝!) ≤ 𝑥(𝑝!). 
3. Choose |!|

!
 disjoint sets of size 2 from P, call these sets PAIRS. 

4. Determine the slopes of straight lines defined by the pairs. 
5. Determine K, the median of {𝑘(𝑝! ,𝑝!)|(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆} 
6. Let 𝑆𝑀𝐴𝐿𝐿 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! < 𝐾} 

Let 𝐸𝑄𝑈𝐴𝐿 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! = 𝐾} 
Let 𝐿𝐴𝑅𝐺𝐸 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! > 𝐾} 

7. Find the set of points which lie on the supporting line h with slope K. 
Let MAX be the set of points 𝑝! ∈ 𝑆,  s.t.  𝑦 𝑝! − 𝐾×𝑥(𝑝!) is maximum. 
Let pk be the point in MAX with minimum x-coordinate. 
Let pm be the point in MAX with maximum x-coordinate. 

8. Determine if h contains the bridge: 
If 𝑥 𝑝! ≤ and 𝑥 𝑝! > 𝑎 then return ((k,m)). 

9. H contains only points to the left of or on L: 
If 𝑥(𝑝!) ≤ 𝑎 then 
For all (𝑝! ,𝑝!) ∈ 𝐿𝐴𝑅𝐺𝐸 ∪ 𝐸𝑄𝑈𝐴𝐿, insert pj into CANDIDATES 
For all (𝑝! ,𝑝!) ∈ 𝑆𝑀𝐴𝐿𝐿 insert pi and pj into CANDIDATES 

10. H contains points only to the right of L: 
If 𝑥 𝑝! > 𝑎 then 
For all (𝑝! ,𝑝!) ∈ 𝑆𝑀𝐴𝐿𝐿 ∪ 𝐸𝑄𝑈𝐴𝐿 insert pi into CANDIDATES 
For all (𝑝! ,𝑝!) ∈ 𝐿𝐴𝑅𝐺𝐸 insert pi and pj into CANDIDATES 

11. Return (BRIDGE(CANDIDATES, P)). 
 

3. PDI 

3.1 Algorithm for Overall PDI 
1. Initialize the following: 

a. MCP, the set of ordered points representing the minimum convex polygon for the 
entire population range. 

b. A, the area of the minimum convex polygon defined by the hull. 
c. 𝑆 = [𝑠!, 𝑠!,… , 𝑠!!], a set of distances to calculate the bivariate k-function. 

2. For l = 1:N 
a. 𝑃! = {𝑎𝑙𝑙  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  𝑓𝑜𝑟  𝑎𝑛𝑖𝑚𝑎𝑙  𝑙} 
b. 𝑃! = {𝑎𝑙𝑙  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑎𝑛𝑖𝑚𝑎𝑙𝑠  𝑒𝑥𝑐𝑒𝑝𝑡  𝑎𝑛𝑖𝑚𝑎𝑙  𝑙} 
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c. 𝑘!, 𝑘!,… , 𝑘!! !
= 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘(𝑃!,𝑃!,𝐴,𝑀𝐶𝑃, 𝑆)  

d. Find mean and variance for each k1,k2, … over l. 
 

3.2 Algorithm for Bivariate K-function  
 𝑘!, 𝑘!,… , 𝑘!! !

= 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘(𝑃!,𝑃!,𝐴,𝑀𝐶𝑃, 𝑆) 

1. Initialize 
𝐾!"! = 𝐾!",!! ,𝐾!",!! ,…𝐾!",!!

! = 0
𝐾!"! = 𝐾!",!! ,𝐾!",!! ,…𝐾!",!!

! = 0
 

2. For i = 1:length of P1 
a. For j = 1:length of P2 

i. Compute distance between (𝑝!!,𝑝!!) 
ii. If distance is less than any value of s 

1. Compute 𝑤(𝑝!!,𝑝!!) and 𝑤(𝑝!!,𝑝!!), where 𝑤(𝑝!!,𝑝!!) is defined as 
the fraction of the circumference of a circle centered at 𝑝!! and 
crossing 𝑝!! that lies within the minimum convex polygon  

a. For each value of s greater than the distance 

𝐾!",!! → 𝐾!",!! +   
1

𝑤(𝑝!!,𝑝!!)
 

𝐾!",!! → 𝐾!",!! +   
1

𝑤(𝑝!!,𝑝!!)
 

iii. Else, distance is greater than all s values, do nothing  
3. 𝐾!"! →    !

!!!!
𝐾!"!  and 𝐾!"! →    !

!!!!
𝐾!"!  

 

4. MCI 
The global parameters are found by following the process described by Calabrese [1]. The log-
likelihood function is given by  
 

ℓ𝓁 = −𝑀𝑇𝑟𝑙𝑜𝑔𝐶! −
1
2 ∆𝑥 𝑡 − 𝝁𝒙 !𝐶!!! ∆𝑥 𝑡 − 𝝁𝒙

!

!!!

+ ∆𝑦 𝑡 − 𝝁𝒚
!𝐶!!! ∆𝑦 𝑡 − 𝝁𝒚  

 
Where Cl (N by N), 𝜇! (N by 1) and 𝜇! (N by 1) are defined as follows 
 

𝐶! ∶=

𝜎 𝜌
𝜌 𝜎

𝜌 ⋯
𝜌 ⋯

𝜌 𝜌
⋮ ⋮

𝜎 ⋱
⋱ ⋱

,𝝁𝒙 = 𝜇!
1
⋮
1
,𝝁𝒚 = 𝜇!

1
⋮
1

 

 
To find the parameters, the log-likelihood function is maximized. Because the Cl matrix is 
circulant, the Cl matrix can be re-expressed in terms of a uniform eigenvector and eigenvalues 
and the likelihood function maximized with respect to the eigenvalues. There is a closed form 
solution to the eigenvalues that maximize the likelihood function and they are as follows 
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𝜆!,!"# =
1
2 (𝜙!! ∆𝑥 𝑡 − 𝝁𝒙 )! + (𝜙!! ∆𝑦 𝑡 − 𝝁𝒚 )! ! 

𝜆!,!"# =
1

2(𝑁 − 1) ∆𝑥 𝑡
! 1− 𝜙!𝜙!

! ∆𝑥 𝑡 + ∆𝑦 𝑡 ! 1− 𝜙!𝜙!
! ∆𝑦 𝑡 ! 

 
where 𝜙! =

!
!
[1,1,⋯ ]! and 𝜙!

! = !
!
[1,1,⋯ ]. Then, the values of the parameters can be 

obtained with the following relations (where the MCI is equivalent to 𝜌).  
 
 

𝜇! = 𝜙!𝜙!
! ∆𝑥(𝑡) ! 

 

𝜎 =
𝜆! + (𝑁 − 1)𝜆!

𝑁  

𝜌 =
𝜆! − 𝜆!
𝑁  

 
 
 
 


